
Molecular Modeling Approach to the Prediction of Mechanical
Properties of Silica-Reinforced Rubbers

Reinhard Hentschke,1 Jonathan Hager,1 Nils W. Hojdis2

1Fachbereich Mathematik und Naturwissenschaften, Bergische Universit€at, Wuppertal, North Rhine-Westphalia D-42097,
Germany
2Continental Reifen Deutschland GmbH, Hanover, Lower Saxony D-30419, Germany
Correspondence to: R. Hentschke (E - mail: hentschk@uni-wuppertal.de)

ABSTRACT: Recently, we have suggested a nanomechanical model for dissipative loss in filled elastomer networks in the context of the

Payne effect. The mechanism is based on a total interfiller particle force exhibiting an intermittent loop, due to the combination of

short-range repulsion and dispersion forces with a long-range elastic attraction. The sum of these forces leads, under external strain,

to a spontaneous instability of “bonds” between the aggregates in a filler network and attendant energy dissipation. Here, we use

molecular dynamics simulations to obtain chemically realistic forces between surface modified silica particles. The latter are combined

with the above model to estimate the loss modulus and the low strain storage modulus in elastomers containing the aforementioned

filler-compatibilizer systems. The model is compared to experimental dynamic moduli of silica filled rubbers. We find good agree-

ment between the model predictions and the experiments as function of the compatibilizer’s molecular structure and its bulk concen-

tration. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40806.
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INTRODUCTION

Dynamic moduli in terms of amplitude, frequency, or temperature

are essential for the developer of filled rubber applications. In this

context, the advent of silanized silica as filler material in automo-

bile tire treads (1992, introduction of the green tire1 brought about

significant increase in compound variability due to the compatibil-

izer chemistry. In addition to size, shape, and morphology of the

filler and various chemically as well as physically different types of

rubbers, there now exists a vast number of chemical and physical

variations that may be introduced through the compatibilizing

agents. This affects the macroscopic performance parameters like

rolling resistance, wet grip, tread wear etc.2–4 Consequently, it is

highly desirable to develop theoretical approaches allowing the pre-

diction of molecular ingredients for rubber compounds with spe-

cifically improved macroscopic performance.

An effect of major importance in this context was extensively

studied in the 1960s by A. R. Payne. The effect, already observed

by a number of researchers in the early 1940s,5 now bears

his name (an early review is Ref. 6; more recent reviews are Refs.

7–9). The Payne effect describes the marked decrease of the stor-

age modulus, l
0
, with increasing strain amplitude, uo, in filled

rubbers under cyclic loading. Because the effect does not occur in

unfilled rubbers, its cause must be related to either the rubber-

filler or the filler-filler interface(s). Various explanations and

models have been suggested to explain and to quantitatively

describe/predict the Payne effect, including filler network break-

down6,10 (chapter 3)11–13 filler deagglomeration,14,15 polymer

debonding from filler surface,16,17 strain softening of the polymer

shell surrounding fillers,18 or micromechanical approaches.7,8

Nevertheless, it is fair to say that still there are different scenarios

on the molecular scale discussed controversially. In particular, it

is not yet possible to theoretically predict dynamic moduli based

solely on the knowledge of molecular ingredients in a rubber

compound or their molecular interactions.

Recently, we have suggested a nanomechanical model for dissi-

pative loss in filled elastomer networks in the context of the

Payne effect.19 The mechanism is based on the sum of molecu-

lar forces leading to a loop in the stress-strain relation, which

gives rise to spontaneous displacements between filler particles

on the nanometer scale. In this work, we use molecular dynam-

ics (MD) simulations to obtain the microscopic interactions

forces between compatibilizer covered silica particles. These

force curves are combined with the above model to estimate

both the loss modulus, l00, and the low strain storage modulus,

l0, associated with the filler network, in elastomers containing

the aforementioned filler-compatibilizer systems. We find good
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agreement between the predictions of our model and the exper-

imental moduli as function of compatibilizer size and surface

concentration.

NANOMECHANICAL MODEL FOR DISSIPATIVE LOSS IN
FILLER NETWORKS

Filled rubbers acquire most of their mechanical strength

through fillers forming spanning branched networks throughout

the rubber matrix. Transmission electron micrographs (TEM)

(a number of nice examples can be found in Ref. 10; more

recent examples are, for instance, Figure 7.3 in Ref. 9 or Figure

3.8 in Ref. 20) usually show filler network structures based on

connected fractal filler “flocs” build of agglomerates, which in

turn consist of small aggregates composed of primary filler par-

ticles. The aggregates are considered as “unbreakable.” Their

superstructures however are stabilized by comparatively weak

bulk dispersion and interface forces. This picture is supported

by the pronounced dependence of the (low strain) storage mod-

ulus, l
0
, on filler volume fraction, /, in the form of a power

law, Dl’ðuoÞ � /y , where y can be as high as 3.5 or even higher

as shown in Ref. 21. Here, uo is the dynamic strain amplitude,

and D indicates that l’ is calculated relative to a base value,

which encompasses contributions from other sources not

described by the power law. These sources are the pure elasto-

mer network, the so-called hydrodynamic effect, whose by com-

parison weak dependence on / is neglected here, as well as a

contribution due to filler-rubber interaction, which also is inde-

pendent of the strain amplitude to good approximation. In

practice, Dl0ðuoÞ5 l0ðuoÞ2l0ð1Þ, where 1 is around 100%

strain. For a detailed discussion see Refs. 9 and 22.

The following is a summary of the model originally suggested

and discussed in Ref. 19. We focus on one such “breakable”

aggregate-to-aggregate contact within a branch formed by aggre-

gates in the aforementioned filler network. Suppose that two

aggregates along the branch, as shown in Figure 1, do interact

via the following forces,

f 5fpp1fmatrix; (1)

schematically depicted in the top panel of Figure 2. Here, fpp is

the force between two adjacent primary particles, each belong-

ing to a different aggregate. Of course, there may be more than

one direct contact between two aggregates, and we return to

this point below. The solid line in Figure 2 shows that we may

expect a loop in the resultant aggregate-aggregate interaction,

that is, the sum of short-range repulsion, dispersion attraction,

and the rubber bridge’s response to deformation.

The consequences of this force function are explored in the

middle panel of Figure 2. The three force curves correspond to

different values of a constant force, fs, in addition to f . Here,

constant means that fs does not depend on the interparticle

Figure 1. Two aggregates possessing a single direct contact between two

primary particles (black circles) separated by the distance d. The dark

shaded area is a rubber bridge linking the aforementioned aggregates rep-

resented by effective spheres of radius Ragg. Horizontal arrows indicate

external forces acting on the two aggregates.

Figure 2. (top) Cartoon of the force-distance relation, f versus d, pertain-

ing to a breakable aggregate-aggregate contact. Here, “particle” refers to

the direct interaction force, fpp, between two filler primary particles possi-

bly including coupling agents at their surfaces. “Matrix” refers to the elas-

tic deformation force, fmatrix, of the rubber bridge in the previous figure.

The solid line is the net force due to the aforementioned contributions.

(middle) The d-independent external force fs causes a vertical displace-

ment of the previous net force f , shifting the force equilibrium to larger

d values, de (indicated by the solid circles). (bottom) Hysteresis in the

fs2de-plane. The quantities Wloss and fy are the dissipated energy per one

cycle and the yield force at which the spontaneous displacement dy occurs

during extension.
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separation, d, introduced in Figure 1. The force fs arises as fol-

lows. The (cyclic) external stress, acting on a sample of the rub-

ber material, is mainly transmitted along its filler network

branches. In particular, it is transmitted through filler contacts

of which Figure 1 is a pictorial example. Our fs, which may be

positive (extension of the contact) or negative (compression of

the contact), is an effective average force normal to the contact

as a result of the externally applied stress. Due to the assumed

orientational average over all contacts in the sample, however,

there is no specific relation between the sign of fs in this model

and the signs of external stress components at any particular

time. In the following, we assume local equilibrium, that is,

even though fs is the consequence of a dynamic force on the

macroscopic scale, on the microscopic level of the aggregates

the sum of the aforementioned forces is zero. Thus, fs causes

the vertical displacement of f and, if fs is positive, shifts the

equilibrium interparticle separation, de, continuously to the

right. When the local minimum of the aforementioned force

loop crosses the x-axis, then de“jumps” spontaneously to a dis-

tinctly larger value. Further increase of fs again results in a con-

tinuous increase of de. The subsequent decrease of fs leads to

hysteresis, because there is a “jump-in” when the local maxi-

mum of the force loop crosses the x-axis from above. The

attendant path in the fs-de-plane is shown in bottom panel of

Figure 2. The area enclosed by the two curves, Wloss, is the

energy dissipated along the indicated path. The circle marks the

yield force, fy , at which the jump on extension occurs.

In our previous discussion of the model in Ref. 19, we had

studied the dependence of Wloss and fy on the parameters of a

simple model for f . The dispersion attraction was modeled in

terms of Hamaker forces between primary particles. What we

mean by Hamaker force is the weak attractive force between

electrically neutral bodies, which for two spheres with the same

radius R and closest surface-to-surface separation d, has the

form, 2A R=12 d2. The Hamaker constant A, on the simplest

level, is calculated by pairwise summation over the atomic dis-

persion interactions across the spheres.23 In addition, we had

considered aggregates consisting of one primary particle only.

Even though this is unrealistic for quantitative predictions, the

qualitative aspects remain valid. Here, we present a more realis-

tic calculation, that is, the force fpp is obtained via MD simula-

tions of compatibilizer covered crystalline surfaces of SiO2.

Before returning to discuss details of the MD, we briefly explain

how the MD is used to obtain fpp.

The result of our MD simulations is the average potential in-

teraction energy between the surfaces, UðDÞ, shown in the

example in Figure 3 as function of their separation D. From

the negative derivative with respect to D , we obtain the force

fcrystðDÞ (in units of nN=nm2 ). This force is converted to fppðdÞ,
the corresponding force between two spheres of radius R and

closest surface-to-surface distance d, via

fppðdÞ5
ðp=2

0

dAðhÞcosh fcrystðDÞ; (2)

where dAðhÞ52 p R2 sinhdh and D5d12 R ð12 coshÞ: The

notation is explained in Figure 5. An example for fppðdÞ is

shown in the bottom panel of Figure 3. We emphasize that

already Payne24 had discussed Hamaker forces between the filler

particles as possible reason for the compounds stability (based

on earlier work of van den Tempel25. In fact, the break up of

the network under strain then would give rise to the decrease of

the storage modulus. The idea was criticized, because Hamaker

interparticle forces were considered as too weak (cf. Ref. 7). The

Hamaker interaction included in Figure 3 (bottom panel) is for

“naked” silica and will be significantly reduced by the compati-

bilizer layer between the silica surfaces. In the following, we do

not include the Hamaker force, but a more refined calculation

should include this interaction as well.

During a MD simulation, the classical equations of motion of

atoms in a simulation volume are solved numerically.26 The forces

between atoms are derived from empirical potential energy func-

tions (Ref. 27). The present simulations build upon the Universal

Force Field (UFF) potential energy function introduced in

Figure 3. MD snapshots of two slaps of b-cristobalite (100) covered with

a compatibilizer (AS216; the notation is explained in Figure 4) at

T5300 K. Periodic boundary conditions are applied parallel to the surfa-

ces. The compatibilizer surface number densities in these examples

are 0:156 nm�2 (top) and 0:416 nm�2 (middle). (bottom) Curved dashed

line: MD result for the system in the top panel after conversion to fpp via

eq. (2) using R515 nm; straight dashed line: fmatrix using the rubber shear

modulus l50:5 MPa; solid line: sum of the dashed force curves; thick

dotted line: Hamaker force, 2A R=12 d2, using the Hamaker constant A

540 kJ=mol for fused silica taken from Ref. 23. The shaded area is Wloss:
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Ref. 28, including a parameterization adapted to the present sys-

tem. The only coarse-graining applied here is that hydrogen

atoms bonded to carbon atoms are fused with the latter to form

united atoms. Our systems (cf. above) consist of two parallel slaps

cut from a b-cristobalite (100) surface. This is because the silanol

group density on this crystalline silica surface closely corresponds

to what is found in the case of industrial amorphous silica. Com-

patibilizer molecules are “planted” randomly on the slab surfaces

until the desired surface density is reached. The atoms below the

dashed horizontal line in Figure 4 are kept at fixed positions rela-

tive to each other. All other atoms are mobile. The bonding of the

compatibilizer molecules to the surface follows the model put for-

ward by Deschler et al.29 (cf. Figure 4). Compatibilizer partial

charges are calculated on the M€oller-Plesset (MP2) level in con-

junction with the electrostatic potential fitting algorithm using

Spartan 08 (Version 1.0).30 The surface charges of b-cristobalite

are taken from Ref. 31. Periodic boundary conditions are applied

parallel to the surfaces. Subsequently, the potential energy of

interaction between the two slab surfaces is calculated for variable

D, the surface-to-surface separation, as the slab surfaces are

moved (rate: 1 Å/100 pS) toward each other. This procedure is

repeated 10 times, and UðDÞ is the average for each value of D

obtained from these independent runs. The negative gradient

then yields the force curves as explained above. All simulations

are carried out at room temperature (300 K).

The rubber matrix is included as a continuous linear elastic “collar”

surrounding the contact, cf. the shaded area in Figure 1, that is,

fmatrix / 2ðd2doÞ: (3)

In principle, do is the equilibrium interparticle separation when

all other particle-particle interactions are omitted. However, in

all concrete calculations, we set do equal to the zero of fppðdÞ
(cf. the upper panel in Figure 2). The specific form of fmatrix is

approximated based on the simple linear stress-strain relation-

ship dfmatrixðHÞ=ðcosHdAðHÞÞ53lD=lðHÞ. Here, l is the

shear modulus of the (unfilled) rubber. In addition, lðHÞ5do1

2Raggð12 cosHÞ and dAðHÞ52pR2
aggsinHdH. The quantity lðhÞ

is the closest surface-to-surface separation between two spheres

of the same radius Ragg along a set of lines, defined through the

angle h, each of which is parallel to the line connecting the

sphere’s centers. dAðhÞ is the attendant circular surface element

(cf. Figure 5). This notation again is explained in Figure 5. The

total force,
Ðp=2

0

dfmatrixðHÞ, is given by

fmatrix � 6plRagg coth21ð11
do

Ragg

Þ2 1

2

� �
D (4)

(R � doÞ:fmatrix is the force necessary to displace a sphere of

radius Ragg by the distance D5d2do in the setup shown in

Figure 1. This expression is similar to the exact expression

6 plRD, the force needed to displace a macroscopic sphere

of radius R embedded in a rubber matrix with shear modulus

l by a small distance D.32 Notice that coth21ð11xÞ21=2 � 2 if

x50:01 and � 1 if x50:1, which covers the relevant range of

do=Ragg -values.

EXPERIMENTAL

Materials

The rubber is a blend of natural rubber (NR) and styrene-butadiene

rubber (SBR) with 25% styrene and 50% vinyl content. The silica

Figure 4. Illustration of the compatibilizer (AS2n) coupling to the silica

surface. Stars indicate united atom carbon atoms. Vertical rows of dots

indicate the bulk silica atoms, for which the partial charges are taken to

be zero. The same applies to the united atoms labeled (n 2 3), where

(n 2 3) is the number of united atom carbons in this alkyl moiety (in

this study n 5 3, 8, and 16). The other partial charges were computed as

specified in the text. Horizontal rows of dots indicate the repeated occur-

rence of the unit shown in the center either with the compatibilizer

attached (dashed bonds) or hydroxyl groups instead depending on com-

patibilizer surface coverage.

Figure 5. Notation used in eq. (2) (to the left of the vertical dashed lines)

and in eq. (3) (to the right of the vertical dashed line). Notice that in this

drawing the radii R and Ragg are identical solely for reason of

convenience.
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used here has a specific cethyltrimethylammoniumbromide (CTAB)

surface area of approximately 160 m2=g and a specific Brunauer-

Emmet-Teller (BET) surface area of approximately 175 m2=g. Trie-

thoxypropylsilane and triethoxyoctylsilane were used as compatibil-

izers. Materials and their amounts in units of phr (parts per

hundred rubber) are listed in Table I. In order to focus on the inter-

action between filler particles or aggregates, no vulcanization chemi-

cals are part of the formulation.

Preparation of Specimens

The internal kneader was a Werner und Pfleiderer Typ GK 1,5 E

with intermeshing rotor geometry. The compound was mixed

7 min with a drop temperature of 150
�
C so that the reaction of

the compatibilizer and the silica has taken place.

Dynamic-Mechanical Characterization

The dynamic-mechanical characterization of the mixed rubber

samples was done on a Rubber Process Analyzer from Alpha

Technologies as a strain amplitude dependent measurement. All

samples were conditioned via a full strain sweep from 0:3% to

100% in shear at a temperature of 70
�
C with a frequency

of 1 Hz. The experimental data discussed below were taken dur-

ing the second strain sweep under identical conditions.

COMPARISON TO EXPERIMENTAL DATA

From our model based on a single aggregate-to-aggregate inter-

action, we can estimate albeit roughly, the storage and the loss

modulus as functions of strain amplitude. First, we observe that

the yield force, where the jump occurs, is directly related to the

compound strength as measured by Dl0 at low strain, Dl0ð0Þ,
that is,

Dl0ð0Þ / fy : (5)

Notice that the initial modulus, here we mean the contribution

to the storage modulus in the small strain limit due to the con-

tacts between aggregates, is proportional to the applied force

divided by the attendant displacement. In other words, it is pro-

portional to the derivative of the force curve, for example, the

solid line in the bottom panel of Figure 3, with respect to d

close to equilibrium. This derivative can be either determined

directly from the force curve. Or, and this is done here, it may

be estimated via fy divided by the attendant surface-to-surface

displacement, that is, the displacement from where the force is

zero to where the contact yields to strain. Because the latter

displacement varies much less than fy , we may use the yield

force as a measure for the contact’s stiffness. Thus, we arrive at

the above approximate relation. Below, we apply relation (5) to

measurements of the storage modulus as function of compati-

bilizer surface density. Thus, we may determine the proportion-

ality constant from one experimental concentration and use the

same constant for all others. We emphasize that our theory is

not a statistical theory, that is, does not predict the average frac-

tion of closed contacts. Thus, our prediction of the storage

modulus as well as our prediction of the loss modulus below

are limited to strain amplitudes for which this fraction can be

estimated by simple means.

Second, we use the formula w5pl00uo
2 to estimate the loss

modulus (e.g., Ref. 33). Notice that the quantity w is the dissi-

pated energy density during one period of a sinusoidal cyclic

strain with an amplitude uo, u5uosinðxt1dÞ, and a likewise

sinusoidal response, r5rosinðxtÞ; that is, w5
Þ
rdu5

Ð2p=x

0

r _udt .

Using l05ðro=uoÞcosd and l005ðro=uoÞ sind yields the above

equation relating w to l00. Thus, w5ðWloss=NAÞðj/=VaggÞ or

l005ðWloss=NAÞðj/=Vaggpuo
2Þ: (6)

The quantity NA is Avogadro’s constant, / is the filler volume

fraction, and Vagg54pRagg
3=3 is the aggregate volume. Here,

Wloss is the dissipated energy per contact during one cycle as

depicted in Figure 2 in units of Joule per mol. Notice that /=Vagg

is the number density of aggregates in the sample and j is the

average number of broken contacts per aggregate.

The quantity j is difficult to determine. In particular, we do

not know its dependence on uo. Here, we assume uo � 0:1,

because it narrows j to a reasonable range using the follow-

ing rational argument: we may assume that almost all, that

is, 80%–90%, of the filler-filler contacts responsible for the

Payne effect, are broken at this amplitude. This is based on

the phenomenological models proposed by Kraus11 and subse-

quently by Maier and G€oritz.16 The models describe the func-

tional form of the Payne effect as well as that of the

attendant loss modulus (a summary is presented in Chapter

7 of Ref. 9). They may be fitted to existing experimental

data, and, because one fit parameter is the ratio of broken to

unbroken contacts, we are able to deduce the quoted percen-

tages. Larger uo are less useful, because the experimental loss

modulus becomes small and its magnitude is strongly affected

by the polymer network, whose energy dissipation is not

included in the current model, as well as by experimental

scatter. In addition it is reasonable to assume that the maxi-

mum value for j is about 3, because three contacts between

rigid bodies do fix their respective positions and orientations.

Thus we conclude that jðuo � 0:1Þ is between 1 and 3,

ignoring branch points of the filler network possible possess-

ing larger j values.

In the following, we use a primary particle radius R515 nm,

which is rather typical for commercial rubber applications.

Nevertheless, in reality, R as well as the aggregate size, Ragg, do

have broad distributions (e.g., Ref. 34). Our value of Ragg550

Table I. Formulation Used

Compounds Ratio (phr)

NR 20

SBR (25/50) 80

Silica 95

Mineral oil 35

ZnO 2.5

Antiaging agents 4.0

Stearic acid 2.5

Compatibilizer Variable
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nm is based on the recent TEM and Small Angle X-ray Scatter-

ing study in Ref. 34.

Before we discuss our own data we take a look at Ref. 35. The

authors discuss the influence of silanization on dynamic-

mechanical properties of silica in Nitrile Rubber/Butadiene Rub-

ber (NBR/BR) blends. Without silane coating their l00ð10%Þ is

between 0:95 and 1:15 MPa for the two different formulations

at room temperature, where we have subtracted 0:1 MPa for the

matrix (cf. their Figure 7). The filler content is about /50:15.

Using l50:5 MPa also inferred from their data, we obtain,

based on the lowest force curve (dotted line) in the top panel

of Figure 6 and using eq. (6), 0:4 MPa < l00ð10%Þ < 1:2 MPa

for 1 � j � 3. Thus, considered the complexity of the system,

the result appears reasonable. The displacement dy in this par-

ticular case is 7:5 nm.

Before we apply relation (5) and the approximation (6) to

our own experimental data, we discuss the latter themselves.

Figure 7 shows the experimental storage modulus, l0, and

the experimental loss modulus, l00, at the respective strain

amplitudes of 0:28% and 10%, for two different compatibil-

izers versus their (average) surface number density, r. The

data show an overall decrease of both moduli with increasing

compatibilizer coverage. This decrease is more pronounced

and occurs at smaller compatibilizer densities when the alkyl

moieties are larger.

Notice that r is calculated via

r5
NAms=Ms

mf OCTAB

� 10218 nm22: (7)

Here, NA again is Avogadro’s constant, ms=Ms is the total com-

patibilizer mass divided by its molecular mass. Thus, NAms=Ms

is the total number of compatibilizer molecules in the system.

The quantity mf is the total mass of filler in the system and

OCTAB5160 m2=g (cf. above). The product mf OCTAB is the

accessible filler surface in m2. Calculation of r using the above

equation assumes complete reaction of compatibilizer with the

accessible filler surface (notice that the size of CTAB is compa-

rable to the size of the compatibilizer used in this study).

Already the simulated forces fpp in Figure 6 indicate that the

attenuation of the storage modulus in our theory do occurs at

much smaller compatibilizer coverage in comparison to the

experiment in Figure 7. This means that the constant c in the

equation rðexpÞ5c rðsimÞ, where rðexpÞ is the r in eq. (7), is

not one but must be significantly larger than one. In the follow-

ing, we discuss why this is reasonable.

The experimental CTAB surface of the filler is OCTAB5160 m2=g.

Calculation of the total surface of a collection of isolated, smooth

spheres with radius R515 nm yields 87 m2=g (or 44 m2=g if

R530 nm). If we repeat the calculation for aggregates consisting

of a large number spheres according to their volume, closely

packed, of which only the outer surface is accessible, then

this area is reduced by about a factor of three, that is, to roughly

30 m2=g (or 15 m2=g if R530 nm). We conclude that surface

roughness increases the total surface area of the experimental

silica by a considerable factor. This suggests that the largest

Figure 6. Forces fpp versus d obtained via MD and conversion to spherical

particles according to eq. (2). (top) Length of dashes increases with increas-

ing surface density. Densities included are 0.017, 0.52, 0.121, and 0.21 com-

patibilizers/nm2. (bottom) Length of dashes increases with increasing

surface density (0.017, 0.039, 0.052, and 0.087 compatibilizers /nm2).

Figure 7. Storage modulus, l’, (top) and loss modulus, l’’, (bottom) ver-

sus compatibilizer surface density, r. Open symbols: experimental data;

closed symbols: theoretical results. The experimental dynamical amplitude

is 0:28% in the upper panel and 10% in the bottom panel.
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portion of the filler surface consists of cracks, pits, groves, and

possibly cavities, whose combined surface area, called here the

noninteracting surface, does not participate in the direct interag-

gregate interaction considered here. Notice also that, as the simu-

lated force curves in Figure 6 show, the important interactions

do have very short range. Thus the combined surface of those

cracks, pits, groves, and cavities, that is, the noninteracting sur-

face, does not, in our model, contribute to l0 or l00.

Because adsorption, physical and chemical, occurs preferentially

at or near surface sites providing extra attractive interactions

(e.g., steps, corners, pits, groves, etc.), it is not unreasonable to

assume that the noninteracting surface is slightly more favored

over the remaining or interacting surface. Because the interact-

ing surface is much smaller than the noninteracting surface,

even a small bias is sufficient to cause a pronounced difference

in the respective surface compatibilizer densities. What we

mean by bias is that the adsorption/reaction chemical potential

is less on the noninteracting surface for the above energetic

reason associated with its greater roughness. Figure 8 shows an

illustration. The interacting surface corresponds to the flat

boxes possessing compatibilizer sites indicated by circles. The

double-dashed lines correspond to the noninteracting surface.

The total noninteracting surface in this example exceeds the

total interacting surface by a factor 5/2. The left cartoon shows

the situation for a site occupation of 3/4 when all sites are

equivalent. The right cartoon shows the situation when the

sites on the noninteraction surface are more favorable. Their

occupation has risen to 4/4, whereas the occupation on the

interacting surface has diminished to 1/8. Thus, in this particu-

lar example, c has the value 8. The driving force here of course

is the second law of thermodynamics. The system strives to

approach the lowest possible free enthalpy. While the coverage

on the interacting surface is severely reduced, the correspond-

ing coverage change on the noninteracting surface is rather

moderate. It is therefore not at all unreasonable to assume that

the compatibilizer coverage on the physical surface is heteroge-

neous. In particular, the coverage on the interacting surface can

be significantly less than the average obtained by eq. (7). Of

course there also is the entropic part of the chemical potential.

In particular, the mixing entropy will prevent a total depletion

of the energetically less favorable surface, even if energetically

more favorable empty sites on the noninteracting surface are

available in excess. Based on this qualitative idea, we use c as

an adjustable parameter.

Figure 7 also shows the two theoretical relations (5) and (6) in

comparison to the experimental data. Throughout this compari-

son c57. In the top panel, the storage modulus, l0, at an

amplitude of 0:28% is plotted versus the compatibilizer number

concentration on the surface, r. The theoretical values are

obtained via (5) using the same proportionality constant for all

data points. The latter is chosen to yield agreement to within

the scatter with the experimental data at vanishing compatibil-

izer coverage. Because the difference between l0 and Dl0 is

small, we assume Dl0 � l0. The bottom panel compares relation

(6) to the measured loss modulus, l00, of the same systems. The

amplitude however is 10%, as explained above. Here, we have

added a constant offset to all theoretical data values, accounting

for the matrix contribution to the loss modules, which is not

part of our model. In addition, we use j51:3 for the average

number of opened contacts per aggregate. This number is

smaller than the j value used above. But this is perhaps not

surprising, because j should depend on the processing condi-

tions, which differ. Overall, we obtain good correspondence

between theory and experiment. It is interesting to plot the

same data not versus r but versus rðC	Þ, the C	-number surface

density, as shown in Figure 9. We find a significant collapse of

all data onto a master curve.

To the best of our knowledge, this is the first molecular calcula-

tion of dynamic moduli of filled elastomer networks, even

though a number of severe approximations are used along the

way. For the latter reason, the particular value of the present

calculation method, at this stage, is perhaps not its predictive

power in the absolute sense. It rather offers an opportunity to

compare different compatibilizers with respect to their relative

effects on the dynamic moduli l0 and l00.

Figure 8. Illustration of homogeneous (left) versus heterogeneous (right)

compatibilzer concentration. Flat solid boxes correspond to the interacting

surface. Double-dashed lines correspond to the noninteracting surface,

that is, the pentagon schematically represents cracks, pits, or groves on

the surfaces of real filler particles. Solid circles indicate compatibilizer sites

either occupied (solid circle) or empty (open circles).

Figure 9. Experimental storage and loss moduli of Figure 7 (open sym-

bols) together with our theoretical results (solid symbols) plotted versus

the surface number density of united atom carbons, rðC	Þ.
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DISCUSSION AND CONCLUSION

The combination of dispersion attraction between filler particles

as well as other short-range attractive forces with an elastic

restoring force due to the rubber matrix between the filler par-

ticles gives rise to a force loop. This in turn results in a sponta-

neous relative displacement of the filler particles associated with

energy dissipation. This nanomechanical mechanism is akin to

the jump-to-contact mechanism well known in atomic force

microscopy. It is the combination of the attractive tip-to-surface

interaction with the elastic cantilever force, giving rise to an

analogous force loop.

The nanomechanical model presented here focuses on a single

particle-particle contact. This contact is modeled in part using

the MD technique based on an empirical force field. Currently,

the filler material and the coupling agents are treated on a

molecular level, assuming however an idealized spherical shape

of the primary filler particles. The effect of the rubber matrix is

included as a continuous linear elastic “collar” surrounding the

contact. Despite the overall crudeness of the inclusion of molec-

ular detail on a continuum background, which currently does

not include explicit bonding between coupling agent and poly-

mer, it appears possible to correlate the models predictions suc-

cessfully with a number of experimental measurements.

Recently, other examples have been published also using force

field modeling to study the interfaces and forces related to this

work. Kl€uppel et al.36 have investigated the rupture of filler-

filler bonds in strained elastomers using MD of coarse-grained

polymer chains. They find indication of a so-called glassy layer,

induced into the rubber directly adjacent to the filler surface. It

may be useful in this context to point out an older work by one

of the authors studying the forces between helical polypeptides

in solution.37 These rodlike macromolecules do form liquid-

crystalline phases in concentrated solutions. Quantitative

excluded volume theories of these transitions do require the

increase of the “naked” diameter of the helices, which may be

interpreted in terms of “solidlike” solvent layers on the surface

of the helix. A three-shell solvent layer consistent with the theo-

ries was indeed found in the above simulation study. The break-

ing of glassy bridges between filler particles has been studied as

one of the causes for the Payne effect (e.g., Ref. 38). However,

to be best of the authors knowledge no theory on this basis

thus far exists, which also accounts for the pronounced effects

on the Payne effect due to the molecular structure of the cou-

pling agents. Another point requiring clarification is that the

formation of a percolating (carbon black) filler network in the

rubber matrix causes a pronounced drop of the materials elec-

trical resistance.39 It therefore is necessary to explain whether

and how the concept of glassy bridges is compatible with the

measured conductivity. This emphasizes that it is highly desira-

ble to include the polymer in the above simulations and work

along this line is in progress. Nevertheless, one should bear in

mind that chemically realistic molecular simulations are limited

to system sizes in the nm range and to the ns time scale.

Aside from the molecular modeling approach it is possible to

augment our simplistic treatment of the rubber bridges between

aggregates through the use of generalized Maxwell models,

which would allow it to include important contributions to the

overall frequency dependence left out thus far (see for instance

the works of Lion and coworkers in Refs. 40 and 41 and refer-

ences therein).

Before moving to the next point, we want to include one

remark in this context. The authors of Ref. 42 show that the

heat build up in experimental filled rubbers is reduced if the

amount of sulfur in the compound (and thus the crosslink den-

sity) is increased. This is consistent with our model. We do find

that Wloss decreases, when the matrix modulus, l, increases (as

shown in Ref. 19; notice that increasing l also increases the

slope of the matrix force in Figure 3 (bottom), which in turn

reduces Wloss). In the same study, the heat build up also is

reduced when the amount of compatibilizer is increased. Again

this is consistent with the present model.

Last but certainly not least, we have taken a localized approach

to the filler-filler contact by focusing on isolated contacts.

Future work may show that it is necessary to include correlation

effects between links, because the external strain is applied to

the (fractal) strands of many aggregates.43,44
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